新闻动态

近日,昆仑数据自主研发的KMX机器大数据平台,通过2016年“北京市新技术新产品(服务)认定”。此认定由市科委、市发展改革委、市经济信息化委、市住房城乡建设委、市质监局、中关村管委会联合评选并颁发证书,授予自主创新、技术先进、产权明晰、质量可靠、市场前景广阔的产品(服务)。 有别于既有的企业信息系统和消费互联网领域的技术与产品,昆仑数据KMX是国内首款机器大数据管理分析平台,针对产业互联网领域的大数据管理、理解与价值挖掘等难题,特别设计了系统内核以及机器数据全生命周期管理分析流水线工具集。 KMX将机器数据分析挖掘功能与数据存贮检索能力无缝整合,同时还内置了行业数据模型和分析模型,达到开箱即用,大幅降低工业企业大数据应用的成本和技术门槛。 此前,KMX已荣获“2016中国大数据工业行业最佳产品”,并已被采纳为北京工业大数据创新中心基础系统服务平台,在新能源、工程机械等行业投入使用。未来,昆仑数据将继续秉承专业、前瞻、务实、敏捷的理念,以专业能力和前瞻眼光,揭示机器数据奥妙,帮助企业开始行动。 ...

Read More

大数据是工业升级的关键技术要素已经是一个业界共识。新工业革命的实质就是一场从自动化、信息化时代向数字化、互联化、智能化时代迈进的产业变革,让工业企业可以基于从自动化、信息化系统中采集的数据对于企业的生产经营进行深入洞察和优化提升。那么,究竟大数据能为工业企业带来哪些具体的业务价值?要实现这些业务价值,企业又应该从何做起?   工业大数据的业务价值   大数据对于工业企业提升质量、效益和行业竞争力起着不可替代的作用。   一方面,大数据将和物联网、云计算等一起支撑产品制造生命周期“4+1”环节业务模式创新。   在产品设计环节,在各种需求数据、设计数据、产品仿真数据的支持下,可以支撑众包众智的协同创新设计模式;在产品使用数据的支持下,可以支撑用户反馈驱动的产品演进设计模式。   在制造环节,在生产计划数据、过程控制数据、设备状态数据、质量检测数据、资源使用数据等的支持下,可以支持制造质量控制与提升、实时排程、减低资源消耗等智能车间能力。   在销售交付流通环节,基于销售订单、仓储物流、供应商和用户信息、市场行情等数据,可以支持更经济、更高效的智慧物流,以及工业品市场预测、精准营销等。   在后服务环节,基于产品工作状态数据、周边环境数据、用户交互信息,可以进行产品健康评估、基于状态的保养维修、零备件库存优化管理等。   在单个产业链之外,还可以通过不同产业链间数据打通,消弭不必要的中间环节,提升产业生态链的效率。例如,汽车企业可以直接把汽车外壳形状和材质要求提供给钢铁企业,而不是传统方式通过一个中间商从钢铁企业买钢板,再按照车厂的要求裁剪冲压成汽车外壳,既提升了响应时间,又降低了费用,边角余料还可以直接回炉减少浪费。     另外一方面,大数据也是新兴的产业互联网的重要支撑手段。   随着物联网技术的普及,越来越多的工业产品开始有了感知能力和开始联网。就像智能手机是移动互联网的载体一样,这些智能联网的工业品形成了产业互联网的载体,每一类的联网工业品上承载着一个产业互联网应用的生态,例如联网的汽车上承载着车联网,联网的能源装备上承载着能源互联网。   在产业互联网时代,工业产品能带给用户的价值将超过产品硬件本身的功能,而可以更全面地支持用户全生命周期的使用场景。   在《哈佛商业评论》的一篇文章中,以农机为例,描绘了这样一个产品转型的过程(如下图)。     过去的农机产品如拖拉机,加上一个外设如播种装置、犁地装置等,形成了一个农场设备系统,可以帮助农夫完成耕种活动。   未来的农机,在联网之后,除了耕种外,通过传感器可以在耕种的过程中感知土壤墒情,还可以联网对接天气系统、浇灌系统、种子数据库等,全面指导农夫的各项工作:根据天气决定农业活动时间,根据墒情决定如何施用水肥,甚至根据市场情况决定种什么品类农作物。   总结起来,工业大数据业务价值实现路径有二,如图所示:     一是制造全生命周期业务创新(先进制造):通过大数据驱动的创新产品设计、智能制造、智能服务,实现提升产品质量、生产效率、节省成本,达到提升企业在行业内竞争力的目的。按照大数据切入的环节不同,具体又可以落实到协同设计、精益制造、智能运维等。   二是产业互联网新业务创新(制造+互联网):以智能联网的工业产品为载体承载服务产品周边生态系统的产业互联网业务,达到开创新兴市场和业务模式的目的。根据产品和所服务用户的不同,产业互联网业务将表现出多种不同的形态。   工业企业大数据实施路径   那么,具体到一个工业企业,要实施工业大数据,应该从何做起呢?并没有一定之规。企业需要根据自身的业务发展状况和竞争策略来决定自己的最佳实践切入点。   对行业领先者而言,企业最大的挑战不是行业内部的竞争,而是如何拓展新业务空间的问题,那么可以选择从“制造+互联网”业务创新的角度切入。   典型的例子是海尔的U+智慧生活空间,全面服务海尔家电用户在使用电器过程中的各种需求,例如烤箱的用户不仅需要烘焙的功能,还需要点心配方、原料、和其他烘焙爱好者交流,这些全部可以在U+智慧生活空间中得到满足,而海尔也借此从一个家电硬件的制造商转型成为了智慧生活服务提供商。     对于面临巨大竞争压力的企业而言,更迫切的需求在于通过提质增效、提升服务水平来增加企业竞争力,因此选择“先进制造”的路径是可行的。在“先进制造”路径下,又可以根据所处行业和企业自己的特点和基础来选取一个合适的切入点。   举例说明:在陕鼓动力所在的动力透平行业,由于所服务的冶金和化工等行业需求下降,新产品的采购需求也下降,企业通过服务创新,建设远程设备运维系统,实现从制造向“制造服务”的转型,目前企业收入中服务所占比例已经超过一半;   金风科技所在的风电行业,业主关注风场整体投入产出效率,金风利用大数据技术加强风机设计,变基于典型工况的选型为根据每台风机的微观选址进行个性化的“一机一设计”;   山东临工所在的工程机械行业,液压阀等核心关键部件长期为国外垄断,订货周期长,且挤占了大量利润,要实现核心部件自主制造,必须突破质量关,因此临工采用“点穴式投入”,针对关键零部件进行了智能制造改造。   条条大路通罗马,只要把握技术为业务目标服务的本质,明确业务提升目标,实施大数据就有了一个良好的开端。   ...

Read More

9月10日,以“创新驱动产业未来”为主题的“北京市产业创新中心政策发布会暨 北京工业大数据创新中心成立大会”在中关村智造大街召开。昆仑数据CEO陆薇担任北京工业大数据创新中心主任,昆仑数据作为北京工业大数据创新中心成员单位之一,用专业洞察与国内首个机器大数据平台助力产业升级。   (昆仑数据CEO陆薇出任工业大数据创新中心主任)   为贯彻《中国制造2025》和《中国制造2025北京行动纲要》,《北京市产业创新中心实施方案》正式出台,北京市将从智能制造系统和服务、自主可控信息系统、云计算与大数据等八大专项扶持培育一批创新中心。   北京工业大数据创新中心作为其中之一,将凝聚资源提升工业大数据技术创新能力、加速工业大数据和产业互联网发展,提升中国工业全球竞争力。而昆仑数据负责自主研发的行业系统平台是核心技术的关键突破点,是工业大数据在行业得以快速广泛应用的基石。   在工业大数据创新中心“首批成果展示”环节中,昆仑数据副总裁秦磊发布了中国首个机器大数据管理分析平台KMX,其核心功能分为:机器大数据湖MDL、机器数据全生命周期生产线MDR和资产模型框架AMF,同时提供开放API支持数据及分析结果与企业应用流程的集成。   KMX将有效解决工业企业数据管理成本过高,业务人员缺乏大数据技能障碍,支持工业企业实现从数据挖掘价值并驱动业务行动实现价值的闭环,大幅降低工业企业应用大数据的成本和门槛。   该平台已被采纳为创新中心的系统软件平台,在此基础上,昆仑数据将与创新中心各工业龙头企业共同建设行业应用平台与解决方案。   (昆仑数据副总裁秦磊发布KMX机器大数据平台)   金风科技、三一重工、山东临工、中石油规划院、冶金自动化院等成员单位在该环节分别分享了“风电数字化转型路线”、“工程机械智能运维平台”、“油气长输管网的远程监测与运行优化”、“全流程质量分析与在线调控”等在工业智能化与大数据应用方面的经验与阶段性成果。     由昆仑数据牵头组织编写的《2016工业大数据白皮书》也在会上发布,作为北京工业大数据创新中心19家成员单位对行业的献礼,汇集了多位行业专家的深刻理解与洞察,揭示了全球竞争环境与中国制造业存亡危机,对工业大数据全面的认识与思考,从着手应用、避免误区到实践的范例等多重角度,唤起工业企业智能变革的共鸣,指出正确的实践之路。   (昆仑数据CTO王晨发布《工业大数据行业白皮书》)   会议共汇集了一百余位业界领袖与专家学者,专业知识与实践经验的分享让与会者真实感受到工业大数据已经从概念变为切实可见的成效。工业大数据推动的不仅仅是巨大的实体经济脉动,更是高质、高效、绿色的中国未来。...

Read More

前言   上篇文章解读了工业大数据分析的特点,指出工业大数据分析应该注重与机理模型的融合,充分利用领域先验知识。那么,工业大数据分析是不是存在典型的模式,可促进不同领域分析模型的借鉴和复用?   本篇将尝试从分析算法的应用侧重点、分析模型与机理模型融合方式、业务应用场景等三个维度归纳工业大数据分析的典型范式。   下篇:工业大数据的分析范式   6类算法应用范式   数据分析本质上是一种统计手段,需要足够的样本才有可能发挥显著作用。另外,数据分析作为探索未知的一种技术手段,它的作用也与机理复杂度密切相关。这里从产品相似度、机理复杂度两个维度,将分析算法应用分为6类范式。   1)从工业产品的相似度来看,可分为大量相似产品(如风力发电机)和少量定制化产品(如就地建设的化工反应塔)。相似产品在数据分析时可以充分利用产品间的交叉验证,而少量定制化产品应深度挖掘时间维度。   2)从产品机理的复杂性来看,有无需机理模型的black-box产品(如电子消费品,通常不会深入元器件内部去分析)、简单明确机理产品(如风力发电机)、复杂机理产品(如鼓风机、化工厂)。复杂机理产品在工业大数据分析时,应更加重视机理模型和专家经验的融入。   6类算法应用范式图解   4种融合范式   分析模型与机理模型的融合可以分为4种范式:   1)分析模型为机理模型做model calibration,提供参数的点估计或分布估计。例如Kalman滤波。   2)分析模型为机理模型做post-processing。比如,利用统计方法对WRF等天气预报模型的结果做修正或多个机理模型综合,提高预测的稳定性。   3)机理模型的部分结果作为分析模型的feature。例如,在风机结冰预测中,计算风机的理论功率、理论转速作为数据挖掘模型的重要特征。   4)分析模型与机理模型做ensemble。比如,在空气质量预测中,WRF-CHEM/CMAQ等机理模型可及时捕获全局动态演化过程,而统计模型可对局部稳态周期模式有较高精度的刻画,model ensemble可有效融合两类模型的各自优势。   4种融合范式图解   3类业务应用范式   通过对复杂过程的演化过程和上下文的全面深入刻画,工业大数据对产品/设备可靠性、运作效率、产业互联网等3类业务应用场景都有很大促进作用。一些行业的典型工业大数据分析场景如下图所示。   典型工业大数据分析场景图示   小结   工业大数据分析能否真正落地,取决于能否创造经济价值。价值的持续创造,必须与生产/管理流程和上下文相结合,必须理解工业的特点、工业数据的特征和工业界的特殊要求。   这些特殊性决定了工业大数据分析的思路和方法有别于商务大数据,更应以“小数据分析”的心态,融合机理模型和领域经验。在分析模式上,本文将工业大数据分析归纳为6类算法应用范式、4种融合范式和3类业务应用范式,以期促进不同行业分析模型的复用。   作者介绍 田春华:昆仑智汇数据科技(北京)有限公司首席数据科学家。2004年1月清华大学自动化系博士毕业。2004年-2015年在IBM中国研究院,负责数据挖掘算法研究和产品工作,在高端装备制造、石油石化、新能源、航空与港口等行业,帮助中国、亚太、欧美领先企业,成功实施资产管理、运营优化、营销洞察等各类数据分析项目。发表学术论文(长文)82篇(第一作者42篇),拥有36项专利申请(10项已授权)。研究兴趣是数据挖掘算法与应用。...

Read More

前言   作为数据价值变现的核心技术手段之一,大数据分析的作用被广泛宣传甚至神化。对于工业大数据分析,产业界存在有不少困惑。   是不是把商业大数据分析照搬过来就是就足够了?只要有了海量数据,大数据分析是不是不需要任何假设前提了?是不是机理模型或领域经验就不重要了?工业大数据分析有没有典型的范式来指导实际操作?   从行业数据分析实践者的角度,本文上篇剖析工业大数据分析的常见误区与正确的价值变现之路;下篇归纳了工业大数据的典型分析范式,归纳为6类算法应用模式、4种融合模式和3类业务应用模式。   上篇:工业大数据“大,不一样”   在与工业企业的交流中,笔者感受到业界对大数据分析的期望与“神化”。   谓之“神化”,是由于大数据应用在国内外实践产生的案例,在提质增效及个性化服务方面,产生的利润与之煽动的蝴蝶效应,让有些工业企业以为只要安装了传感器,能把数据采集下来,就能让数据说话,就能从上千种因素中定位出故障原因,就能精准指导研发、生产、运营。甚至误认为经典的机理模型或多年积累的经验不再重要。   然而脱离机理与领域知识的大数据分析结果常常是“你以为你以为的不是你以为的”。     工业大数据的“小”与“大”   从传统大数据3V(Volume, Velocity, Variety)或4V(Veracity)度量角度来看,工业数据当然属于大数据的范畴,在体量上甚至超过互联网大数据[1]。然在数据分析中仍不时感觉到工业数据之“小”,主要体现在3个方面。   1)价值密度:王建民教授曾指出[2],相对于产品图纸、工艺设计等传统“小”数据,工业“大”数据的价值密度低。工业大数据分析无法脱离这些基础信息的支撑,不举小数据之“纲”,难行大数据之“目”。   2)大数据永远是物理世界的“小”样本:以SMT(Surface Mount Technology)生产线为例,最终产品质量由工艺参数、材料特性、生产设备等上千个参数共同影响,生产检测大数据仅仅覆盖了很小的参数组合空间(curse of dimension)。并且不是所有关键因素都有测量,测量值也不一定能反映分布式参数系统的全部(比如回流焊的温度监测值并不等于电路板的表面温度)。工业数据分析更需要利用先验知识缩小搜索空间,同时保持一种“大胆探索、小心求证”的态度。     3)对分析有直接意义的样本比例通常很小:工业通常是运行在设计的常态模式下,对不期望的干扰因素会进行很多压制,造成绝大部分数据对应非常相似的环境与过程。特别对于故障分析、残次品因素分析等大数据分析,样本不均衡程度非常高(biased data)。虽然物理系统相对社会系统更容易做一些控制性实验,但由于很多工业领域控制实验(比如风机叶片断裂、油气管道泄漏等)成本或风险太高,实际上也很难提供足够的异常情形样本。   因此,工业大数据的“大”不能仅从数据量、数据类型、产生速度、质量等角度来看,而应考虑以下两个方面。   1)维度之大:风力发电机组的健康分析应该从时间(过去故障记录、整机性能演化等)、空间(相同机型在不同风场的表现)、环境(气象、地理)、业务运作(设计、维修、限电等)等多个维度综合来看。独立看似异常的事件,很多其实是正常业务操作引起的(如风机功率低可能是由于启动限功率运行模式以降低对居民区的影响)。对于工业数据,更应构建全面的上下文(context model),才有可能分析出一些有价值的结果。   2)先验知识基础之大:工业领域通常有大量的机理模型、专家经验的深厚积累,可以为数据分析缩小参数空间、提供有用的特征变量(如齿轮箱震动的倒谱参数),数据分析也应思考如何有这些基础更好的互动与融合,以期创造更大的价值。     工业数据分析与商业数据分析:一字之别?   当前很多流行的大数据理念来自于互联网和商务领域,不少分析技术也是针对商业大数据。但工业大数据与商业大数据在很多地方存在比较大的差别,郭朝辉等行业专家对此从不同角度进行了深刻剖析[2,3],我们将其归纳为如下表所示的四个维度[4]。     1)研究对象不同:工业领域以物理系统(物理实体或环境)为中心,研究动态过程的规律和因果关系,而商业大数据以人造系统(人或流程)为研究对象,试图理解其中的行为模式。当然,工业领域的一些简单产品(如个人电子消费品)制造业和商业产品在产品定义、营销和售后有不少相似之处,但对于复杂产品(如高端装备、高精度制造),区别是非常显著的。   2)现有基础不同:在工业领域,人们对生产过程的研究一般比较深入,形成了很多系统化的中观、微观机理模型,领域知识也比较丰富。客观来讲,对物理系统本身的突破性知识发现难度很大。工业数据中体现出来的规律常常难以突破现有生产技术人员的认知范围。与之相比,商业领域中仅存在一些宏观理念,定性描述人的行为偏好和经济活动规律,给大数据分析留有广泛的提升空间。     3)新的驱动力不同:感知技术的发展和普及是工业大数据的驱动力,现有的工控技术很难处理大数据量的挑战,大量的监测数据也为大数据分析带来与业务数据融合分析的机会。而互联网的发展为企业带来与客户交互的新渠道,极大促进了商业大数据分析的发展。工业领域的大数据大多是具有时空信息的结构化数据,且背后有明确的物理结构(如系统动力学、网络拓扑关系等),对时间序列、时空模式、序列模式等结构模式挖掘非常重要。而商业大数据分析大多集中在结构化的数据仓库表或非结构化数据(如文本、视频),数据间除了实体关系和部分时空信息外,结构性关系较弱。   4)对分析技术的要求不同:工业系统的实时性高,动态性强,对分析结果的精度要求高,很难接受概率性预测,而商业应用常遵循大数原则,概率性的分析就可以为运营提供很大的帮助。不同工业应用场景对技术指标的要求也不同,比如在风机领域,大部件的故障检测报警已经在PLC中实现,大数据分析只有提前若干小时的故障预警才有意义;油气管道泄漏检测中,泄漏发生后的及时报警也很有意义,但其要求零漏报、极低的误报(管道深埋地下,误报会给一线工作人员带来很大工作量);在抽油机监测分析中,可容忍分析算法对一些罕见或复杂故障类型的无法研判(类似漏报),但分析算法可以研判的出示功图异常的的准确率应该是100%(这样就可以降低70~80%的重复性工作)。   工业数据分析的价值实现之道   综上所述,工业大数据分析更应该抱着“小数据”的心态,敬畏机理模型和领域经验,把数据分析模型与机理模型充分融合。数据分析对工业领域知识的帮助主要体现在如下3个渠道:   1)物理过程和业务过程的融合。能将物理量与经营过程量(如产品质量、生产效率、设备可靠性等)的关系定量化,突破现有生产技术人员的知识盲点,实现过程痕迹的可视化。   2)对于物理过程环节,重视知识的“自动化”,而不仅仅是知识的“发现”。将领域知识进行系统化管理,通过大数据分析进行检索和更新优化;对于相对明确的专家知识,借助大数据建模工具提供的典型时空模式描述与识别技术,进行形式化建模,在海量历史数据上进行验证和优化,不断萃取专家知识,充分利用多维度融合带来的统计显著性(比如个别风场看似偶发的故障,在全体风场上可能有稳定的统计规律)   3)“软”测量。在工业应用中,不同过程量监测的技术可行性、精度、频度、成本差别较大,通过大数据分析,建立指标间的关联关系模型,通过易测的过程量去推断难测的过程量,提升生产过程的整体可观可控。     小结   如前所述,工业大数据分析更应秉承“小数据”思维,尊重机理模型和领域知识,利用数据分析技术手段,披沙简金,释放工业大数据的价值。为更明确指导工业大数据分析软件架构,下篇将从分析算法侧重点、分析模型与机理模型融合方式、业务应用场景等3个方面分享工业大数据分析的典型范式,敬请期待。   参考文献 [1]王建民,“大数据与智能制造”, RONG 系列论坛,2016年1月9日 [2]王建民,“中国工业大数据的实践与思考”,中关村大数据产业联盟论坛,2015年3月26日 [3]郭朝晖,“别让商务大数据的思路,误了工业大数据”,物联网智库,2015年11月23日 [4]王晨、杨良、田春华等,“工业大数据发展历程”,《2015年中国大数据技术与产业发展报告》第9章。...

Read More